

Free Allocation of NZ Units

Report from Cluster B

Suzi Kerr, Motu Economic and Public Policy Research 4 December 2007

Outline

- How much to freely allocate
- Key motivations for free allocation
 - Leakage / regrets / competitive at risk
 - Adjustment costs
 - Compensation / Stranded assets
- Sector issues
 - Forestry
 - Agriculture
 - Liquid fuel users / industrial processes / stationary energy users

How much to freely allocate

- Free allocation has an opportunity cost
 - Taxpayers face a higher burden
 - Lost opportunities to use revenue
- Households and consumers bear the long term costs of emissions control
- Free allocation to firms only compensates firm owners
- Firms seem satisfied with level of free allocation though not with phase-out – is it too high?

Information needs

Tax efficiency losses from free allocation

 Share of costs borne by households and consumers in short and medium term

• Existing modelling exists; Is it sufficient and easily available?

Key motivations for free allocation Leakage / regrets / competitive at risk

- NZ's competitors do not face carbon price; NZ production (and emissions) fall; International production and emissions rise
- Environmental implications
- Globally inefficient short-term adjustment costs
 and long-term loss of economic opportunities
- Fiscal costs of protection. No 'regret' from loss if this is a long term issue.

Implication for free allocation?

 Damage arises from carbon price – increased cost of growth, new investment and marginal production

• Therefore allocation method must lower effective carbon price for affected products

Intensity-based allocation does this

Information needs

- How great is leakage likely to be and what are the likely regrets?
- What are intensity-related mitigation options and their costs?
 - If emissions intensity can be easily reduced, leakage is not such a key issue
 - Affects appropriate total allocation to sectors with leakage – particularly phase-out.

Key motivations for free allocation 2 Adjustment costs

- Primary concern is effect on community and workers
- Slower adjustment is less costly
 - Spread adjustment over time through graduated entry of sectors
 - Reduce / address leakage

- Free allocation does not directly benefit communities or workers
- Implication: use other mechanisms as well

Information needs

 Which communities and groups of workers are likely to be heavily affected?

 What types of assistance would help those who face difficulties in adjusting?

Key motivations for free allocation3 Compensation / Stranded assets

- Loss of capital value
 - Physical capital
 - Land

- 'human capital' education and experience
- Housing
- Compensate those who own capital at time of ETS introduction
- Focus on significant, concentrated losses
- Implication: lump-sum allocation appropriate; consider equity across capital classes

Motivations and hence appropriate form of free allocation vary across sectors

Forestry – growing trees

 Issue is pre-1989 forests on good quality land

- Significant, concentrated stranded assets

Lump sum free allocation appropriate

 Outstanding issue is how allocation is spread within the sector

Agriculture

- Key issue is leakage with closely linked implications for stranded assets / loss of profit – How great would regrets be?
- Implication: intensity-based free allocation?
 - Take total free allocation pool for agriculture each year and share based on output shares

Benefits of intensity-based allocation in agriculture

- Reduces incentives to limit production focus on emissions intensity
- Reduces impact of stranded assets / loss of profit roughly proportional to loss
- Addresses exit/new entrant / transfer of allocation issues seamlessly
- Could allow low thresholds for allocation
- Output relatively easily measured

Benefits of intensity-based allocation in agriculture

 Need to address sharing across sub sectors where output is not comparable

 Benefits those who expand production at expense of those who reduce

Information needs

- How large is leakage likely to be
 - Some modelling already exists can it be improved?

How large are regrets likely to be?

 How slow would build up of capability and capital be after its loss?

Liquid fuel users / industrial processes / stationary energy users

- Much harder!
- Primary motivation is leakage but hard to identify who faces it and how much
- 'Output' is harder to define
- Many different products
- Problem is temporary
 - Increased global participation will reduce problem
 - Some may be addressed through international sectoral agreements
 - Border adjustments are a potential option in future

Treat all as 'leakage' - intensity based allocation?

Advantages

- Reduces leakage
- Don't have to differentiate products
- Automatically directs some compensation to stranded assets

Disadvantages

- Have to define 'output'
- Weak incentive to reduce consumption of nonleaky products
- Those with genuine leakage cross-subsidise production of those without

Information needs

- Need credible sub-sector specific information on scale of leakage
- Need information on how 'output' could be defined in each sub-sector
- Need to identify products/sub-sectors where leakage is not an issue but stranded assets are

Fisheries: a sector that primarily faces stranded assets?

- Diesel is a major cost
- Harvests of many species constrained by Total Allowable Commercial Catch limits not economics
- Therefore won't leak
- Face international prices cannot pass on costs
- Loss of value to quota owners

Are other sectors in a similar situation?

Summary

- Total level of free allocation (and phaseout) has efficiency and equity implications
- Appropriate form of free allocation depends on motivation
- For each sector we need more information to choose define key motivation and design system for free allocation

Economic Modelling: Report from Cluster B

Suzi Kerr, Motu Economic and Public Policy Research 4 December 2007

Economic modelling

- Principles
- Short run
- Long run

Economic modelling

- separate research funders from researchers to improve objectivity and credibility
- use best expertise for each question
- use alternative researchers as peer reviewers, at preliminary as well as final stage
- discuss preliminary research results within a group with a range of perspectives (but not fully public to allow free discussion)
- publish research, and guarantee this in advance
- document all data and methods for transparency.

Economic modelling: short run

- Adjustment costs
 - Use general equilibrium model to provide basis for structural shift scenarios
 - Explore implications for regions and occupation groups
 - Compare to scale of 1980s shifts
- Leakage
 - Take sector specific 'stories' and independently analyse and verify them
- Stranded assets
 - Choose critical sectors and analyse scale of effects: e.g. agricultural land; fisheries quota

Decide now if want analysis early next year!!!

Economic modelling: Medium to long run

Mitigation options and costs curves

Motu

- Likely to be funded through FRST, MAF…?
- Private sector involvement and data provision would improve quality

...can feed into environmental impact assessment

- Set up database for emissions trading system to allow detailed evaluation once it begins operation.
 - Allow linkages to other key statistics NZ datasets